RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2014-17] B.A./B.Sc. FOURTH SEMESTER (January – June) 2016 Mid-Semester Examination, March 2016

: 17/03/2016 Date

CHEMISTRY (Honours)

Time : 11 am – 1 pm

Paper : IV

Full Marks : 50

[3]

[3]

[2]

[Use a separate Answer Book for each group]

<u>Group – A</u>

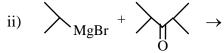
Answer <u>any one</u> question :

burette.

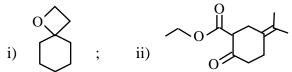
1.	a)	Explain with the help of a μ vs T diagram the fact that freezing point/boiling point of a solvent changes when a solute is present.		
		[assume that the solute does not appear either in the vapour or in the solid phase]	[5]	
	b)	i) Define an ideal solution.	[0]	
	,	ii) For such a solution prove that		
		$\mu(T, X) = \mu_0(T) + RT \ln X$		
		$\mu_0 \rightarrow$ chem. potential of the pure solvent, $\mu \rightarrow$ chemical potential of the solvent in solution		
		$X \rightarrow$ mole fraction of the solvent	[2+1]	
2.	a)	i) Define fugacity for a real gas.	[1]	
		ii) Prove that fugacity and pressure of a real gas are related as		
		$\ln f = \ln p + \int_{0}^{p} \frac{(Z-1)}{p} dp$		
		(where Z is the compressibility factor)	[5]	
	b)	Draw parallel between osmotic pressure of a soln. and pressure of an ideal gas.	[2]	
Answer <u>any one</u> question :				
3.	a)	Define ionic mobility and find out its unit from the definition.	[2]	
	b)	At 298K, the resistance of a cell filled with 0.01M KCl solution is 780 ohm. The resistance of the same cell filled with water is 7422 ohm. Equivalent conductance values of H^+ and OH^- ions are 349.81 and 198.3 S cm ² mol ⁻¹ respectively at 298K. The specific conductance of 0.01 M KCl solution at 298 K is 1.41×10^{-3} S/cm. Find out the value of ionic product of water at this		
	c)	temperature. Discuss the principle of conductometric titration (reasons of change of conductance before and	[3]	
	()	after equivalence point, avoidance of volume effect). Draw the conductometric titration curve for		

- Discuss the graphical method of determination of dissociation constant of a week acid from 4. a) conductance measurements at different concentrations.
 - A moving boundary experiment is done to measure the transport number of Li⁺ ion in 0.01mol/L b) LiCl solution. In a tube of cross-sectional area 0.125 cm^2 , the boundary moves through 7.3 cm in 1490s using a current of 1.8×10^{-3} amp. Calculate t₊.

the titration of NaOH solution versus acetic acid solution, the acid solution being added from a


25ml of 0.1 M HCl solution is taken in a conductivity cell having cell constant 1.00 cm^{-1} . The c) resistance of this solution is found to be A ohm. After addition of 25ml 0.1 M NaOH solution to the cell, the new resistance is B ohm. What is the sign of (A–B)? What is the expression of the equivalent conductance of the resultant solution in terms of B? Explain your answer. [3]

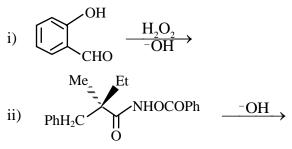
<u>Group – B</u>


Answer any one question :

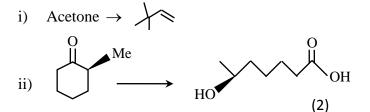
- 5. Carry out the following conversions as directed. Mechanism is not necessary. $[3+2\cdot5+2\cdot5]$
 - a) Diethyl adipate $\rightarrow \bigwedge_{Me}$ (use Me₂CuLi)
 - b) $Me_2CO \rightarrow Me_2CHCHO$ (apply Wittig reaction)
 - c) PhMgBr $\rightarrow Ph$ Ph Ph Use O
- 6. a) Predict the major product of the following reactions.

i) Ph
$$\sim$$
 MgBr + CH₂O \rightarrow

 b) Give retrosynthetic analysis and an efficient synthesis of the following compounds starting from RASM. [2×3]


Answer <u>any one</u> question :

7. a) Write down the product(s) with mechanism.


i)
$$H_3O^+$$

ii) (S)
$$-C_6H_5CH(CH_3)COCl \xrightarrow{1.NaN_3}$$

 $2.CHCl_3/Heat \xrightarrow{3.EtOH}$

- b) Carry out the following conversions.
 - i) Benzaldehyde to Diphenylacetic acid
 - ii) O-xylene to anthranilic acid
- 8. a) Write down the product(s) with mechanism

b) Carry out the following conversions

[2]

[2×2]

[2×2]

[2×2]

[2×2]

<u>Group – C</u>

Answer <u>any one</u> question :

9.	a)	Explain catenation. How does the catenating tendency of elements vary for group 14 elements.	[1+3]		
	b)	Which one, $T\ell^+$ or $T\ell^{+3}$, is more stable? Why?	[2]		
	c)	Which one, BF_6^{-3} or AlF_6^{-3} exists? Why?	[2]		
	d)	Draw the structure of graphitic form of boron nitride.	[1]		
10.	a)	Discuss the structure of borazine. Explain why it is more reactive than benzene. Give two reactions in support to your answer. [2-	+2+2]		
	b)	What are the differences between silanes and alkanes?	[3]		
Answer any one question :					
11.	a) b)	How did Bertlett interpret the reaction Xe and PtF_6 and how is this reaction now interpreted? NCl_3 (not NF_3) hydrolyses readily, while CCl_4 hydrolyses with decomposition at high temperature. Why?	[3] [3]		
	c)	Discuss the structural features of PX_5 (where X = halogen) at gas and solid phase.	[3]		
12.	a) b) c) d)	 Molecular formulae of nitrogen and phosphorus are different. Why? Discuss the molecular orbital bonding pattern of XeF₂. Explain the thermal stability of MH₃ (M = As, Sb, Bi). What will happen when manganese (II) salt solution is treated with sodium bismuthate i) in H₂SO₄ and ii) HCl medium? 	[2] [3] [2]		

_____×_____